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Harmonic oscillator with multiplicative noise: Nonmonotonic dependence on the strength
and the rate of dichotomous noise

M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan, 52900 Israel
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The output signal of a undamped linear oscillator with a random frequency subject to a periodic force shows
nonmonotonic dependence on the strength and the rate of color noise~stochastic resonance!. The effect is
absent for white noise.
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Stochastic resonance~SR! is an interesting phenomeno
exhibited by nonlinear dynamic systems driven by a com
nation of a periodic signal and a random force@1#. Due to its
many potential applications in biology, physics, and chem
try, along with its appeal to scientific curiosity, the number
publications in this field is growing steadily@2#, which is
reminiscent of the ‘‘deterministic chaos’’ boom in the 1970
1980s. Not by chance, the names of both these phenom
consist of half-deterministic and half-random terms. In fa
deterministic chaos denotes a random type of behavio
deterministic systems, while SR shows deterministiclike
havior in random systems. These peculiar features show
determinism and randomness are complementary, rather
contradictory phenomena@3#.

In the broad sense, SR means the nonmonotonic de
dence of the output signal or some function of it~moments,
autocorrelation function, power spectrum, or a signal-
noise ratio, or dynamic parameters! on the characteristics o
noise~noise amplitude or the correlation time!. The peculiar-
ity of SR lies in the fact that noise, which usually appears
a destructive factor, may play a constructive role. Let
bring a partial list of versions of SR appearing under diff
ent headings, which show the ordered role of noise: no
induced transition@4#, noise-induced transport@5#, noise-
induced pattern formation@6#, noise-induced resonances@7#,
noise-induced stabilization@8#, noise-enhanced stability@9#,
noise-induced hypersensitivity@10#, resonance activation
@11#, stochastic transport in ratchets@12#, stochastic localiza-
tion @13#, self-organization and dissipative structures@14#,
coherent stochastic resonance@15#, fluctuation barrier kinet-
ics @16#, amplification of weak signals via off-on intermit
tency @17#, autonomous SR@19#, aperiodic SR@20#.

It first seemed that all three ingredients—nonlinearity, p
riodic, and random forces—are necessary for the onse
SR. However, it later became clear that SR may appear w
out a random force~replaced by a chaotic signal@18#!, with-
out a periodic force~autonomous SR@19#, aperiodic SR
@20#!, or by replacing the characteristic frequency by so
fluctuation rate@11#!, and in linear systems~with multiplica-
tive noise@21,22#!.

SR in linear systems is the subject of the present analy
The analysis of SR in linear systems was previously
stricted to an overdamped oscillator with color multiplicati
noise~Ornstein-Zernike@22#, Gaussian@23#, Poissonian@24#,
or composite@25# noise!. The few examples of the analyse
of SR in an underdamped oscillator either relate to addi
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noise @26# or involve no external field@27#, i.e., describe
autonomous SR.

We consider a forced, underdamped linear oscillator w
random frequency

d2x

dt2
1g

dx

dt
1@v21j~ t !#x5a sinVt. ~1!

The random forcej(t) is a Gaussian variable with zer
mean and Ornstein-Zernike correlator

^j~ t !j~ t1!&5s exp~2lut2t1u!. ~2!

Fluctuations of external parameters@frequency in Eq.~1!#
are expressed by multiplicative noise. The latter was wid
introduced as a model to understand the different phenom
in physics~on-off intermittency@28#, dye lasers@29#, poly-
mers in random field@30#!, biology ~population dynamics
@31#!, economics~stock market prices@32#!, and so on.

The second-order differential equation~1! can be rewrit-
ten as two first-order differential equations

dx

dt
5y, ~3!

dy

dt
52gy2v2x2jx1a sinVt, ~4!

which, after averaging, take the following form:

d

dt
^x&5^y&, ~5!

d

dt
^y&52g^y&2v2^x&2^j~ t !x&1a sin~Vt !. ~6!

The new correlator̂j(t)x& has to be found separately. T
this end, we use the well-known Furutzu-Novikov procedu
@33#, which, for exponentially correlated random function
takes the Shapiro-Logunov form@34#

d^j~ t !x&
dt

5 K j~ t !
dx

dt L 2l^j~ t !x&. ~7!

Multiplying Eq. ~3! by j, one gets after averaging,
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K j~ t !
dx

dt L 5^j~ t !y&. ~8!

Inserting Eq.~8! into Eq. ~7! results in

d^j~ t !x&
dt

5^j~ t !y&2l^j~ t !x&. ~9!

Using the procedure analogous to Eq.~7! for the correlator
^j(t)y&, one gets

d^j~ t !y&
dt

5 K j~ t !
dy

dt L 2l^j~ t !y&. ~10!

Multiplying Eq. ~4! by j and averaging, one obtains

K j
dy

dt L 52g^jy&2v2^jx&2^j2x&. ~11!

Equation~11! contains the higher-order correlator^j2x&,
and one has to use a decoupling procedure. Another po
bility is to consider the special case of the two-state Mark
process~dichotomous noise! which is described by correlato
~2!, andj25s. For this special case, Eq.~11! can be rewrit-
ten as

K j
dy

dt L 52g^jy&2v2^jx&2s^x&. ~12!

Inserting Eq.~12! into Eq. ~10! results in

d^j~ t !y&
dt

52g^jy&2v2^j~ t !x&2s^x&2l^j~ t !y&.

~13!

We thus obtain a system of four equations: Eqs.~5!, ~6!,
~9!, and~13!, for four variables,̂ x&, ^y&, ^jx&, and^jy&.

From these equations one can easily find the fourth-o
differential equation for̂ x&,
.

in
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d4^x&

dt4
12~l1g!

d3^x&

dt3
1~2v21l213lg1g2!

d2^x&

dt2

1@2v2~l1g!1lg~l1g!#
d^x&
dt

1@v2~v21l21lg!2s#^x&

5~v21l21lg2V2!a sin~Vt !1~2l1g!aV cos~Vt !.

~14!

We seek the solution of Eq.~14! in the form

^x&5^x&01^x&a , ~15!

where the output signal^x&a is induced by an external field
a sin(Vt) and^x&0 is defined by internal dynamics. For pu
poses of this discussion we ignore the possible instability
an underdamped oscillator for fast fluctuations@35#.

Let us write the solution̂x&a of Eq. ~14! in the form

^x&a5A sin~Vt1f!. ~16!

Then, one easily finds

A5F f 1
21 f 2

2

f 3
21 f 4

2G 1/2

; f5tan215
f 1f 31 f 2f 4

f 1f 42 f 2f 3
; ~17!

where

f 15~2l1g!aV, f 25~V22v22l22lg!a,

f 35~V22v2!~V22v22l2!2s2~3lg1g2!V21lgv2,

f 45V~l1g!@2~v22V2!1lg#. ~18!

In the absence of friction,g50, Eqs.~17! and ~18! take
the following forms:
A5aF @~V22v22l2!214l2V2#

@~V22v2!~V22v22l2!2s#214l2V2~V22v2!2G 1/2

~19!

and

f5tan21
2Vls

~V22v2!@~V22v22l2!214V2l2#2~V22v22l2!s
. ~20!
For small noise strengths, Eq. ~19! reduces to Eq.~8.6!
of @36# found in a different context by perturbation theory

Prior to the analysis of Eqs.~19! and~20!, let us consider
the limiting case of white Gaussian noise, which, accord
to Eq. ~2!, corresponds tos→` andl→` with a constant
ratio. Then,
g

A5
a

~v22V2!
; f50 ~21!

as it should be, since for white noise^x& satisfies the follow-
ing equation@37#:
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d2^x&

dt2
1v2^x&5a sinVt. ~22!

However, for color noise~dichotomous in the presen
case! the output signal~19! shows nonmonotonic depen
dence on the noise strengths and the correlation ratel
~stochastic resonance!. Indeed, the amplitude of the outpu
signalA reaches a maximum at

s5~V22v2!~V22v22l2!. ~23!

In Fig. 1 we show the dependence of the amplitude o
stationary signalA on the correlation ratel for a5s5v
51, g50, and different frequenciesV of the external field.
This graph shows typical SR nonmonotonic behavior

FIG. 1. The amplitudeA of a stationary signal as a function o
the correlation ratel for a5s5v51, andg50. The curves dis-
played correspond to different values of the frequency of an ex
nal field V50.4, 0.5, 0.7, and 0.8.
e
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V,v. However, the heights of the maxima are nonmon
tonic functions ofV. Indeed, the maximal value of the am
plitudeA for V50.5 is lower than those for bothV50.4 and
V50.7, whereas the positions of the maxima are monoto
cally shifted to higherl with a rise inV.

Note that the resonance amplitude of a nondamped
monic oscillator@Eq. ~19! with V5v] remains restricted in
the presence of colored noise~effective damping!.

In Fig. 2 we show the influence of friction on the amp
tude of a stationary signalA. As expected, an increase i
damping decreases the value of the output signal.

Finally, we have found that SR appears in a underdamp
forced linear oscillator with multiplicative color noise. Fo
dichotomous noise, one can easily find the higher mome
of x(t) @38# along with the first moment considered above

r-

FIG. 2. The amplitudeA of a stationary signal as a function o
the correlation ratel for a5s5v51, V50.5. The curves dis-
played correspond to different values of the frictiong50.3, 0.5,
and 0.7.
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